Resilient Javascript
From Front to Back End
With Circuit Breakers

Lance Ball

Principal Software Engineer
https://lanceball.com
Twitter: @lanceball

GitHub: @lance

Riviera Dev 2018 Ag‘

Thursday, May 17 2018

Resilience

Resiliency is defined as the capability of a system to maintain
its functions and structure in the face of internal and external
change and to degrade gracefully when it must.

TOWARD INHERENTLY SECURE AND RESILIENT SOCIETIES
Brad Allenby, Jonathan Fink

http://science.sciencemag.org/content/309/5737/1034.full

Microservices

Microservices are not a
panacea

M-Service D

function wait (timeout) {
return new Promise(resolve => {

setTimeout(resolve, timeout)

})s
}

M-Service D
const MAX_ATTEMPTS = 10;

let retryAttempts = 0;

function fetchData (url) {
return request.get(url)

.then(formatData)

.catch(err => {
if (retryAttempts > MAX_ATTEMPTS) return Promise.reject(err);
retryAttempts++;
await wait(500);
return fetchData(url);

1)

What Happens When We
Keep On Trying?

(hint: things get worse)

M-Service G
Causes D and E to Block

So now what?

Assume that an application connects to a remote
service 100 times per second and the service fails. The
application developer does not want to have the same
error reoccur constantly. They also want to handle the
error quickly and gracefully without waiting for TCP

connection timeout.

Naive Implementations
are a Band-Aid

Circuit Breakers

One Try

Failure

lllllllllllllllll

Success

const CircuitBreaker = require(‘opossum’);

const options = {
timeout: 1000,
errorThresholdPercentage: 50,

resetTimeout: 5000
}

const circuit =

CircuitBreaker(fetchData('/some/url'), options);

function fetchData (url) {
return _ => {
return request.get(url)
.then(formatData)
.catch(err => {

console. log(err)

1)

circuit.fallback(

_ => 'Sorry, out of service right now'

)5

circuit.on('fallback"',

result => reportFallbackEvent(result));

Events

One Try

Failure

lllllllllllllllll

Success

Events

b R D D S D

%

fire
o When the circuit is fired
success
o When the call is successful
failure
o When the call fails
open
o When the circuit opens
close
o When the circuit closes
halfOpen
o When the circuit enters
half-open state
fallback
o When a fallback function s
called

cacheHit
o A success value is in the cache
cacheMiss
o A value was not found 1in the
cache
timeout
o When the call times out
semaphore-locked
o When resources are used up and
no more calls can be made
health-check-failed
o When a user-supplied health
check function fails

snapshot
o When a statistics snapshot is
taken

Statistics Snapshots

circle color and size represent Error percentage of

health and traffic volume s“wmm A last 10 seconds
200,545 0%
Request rate
Cluster: 20, 055 0/s
2 minutes of request rate to Circuit Closed .
show relative changes in traffic Hosts 370 90th 10ms Circuit-breaker
Median 1ms 99th 44ms status

Mean 4ms 99.5th 61ms

N

hosts reporting from cluster))
last minute latency percentiles

Rolling 10 second counters
with 1 second granularity

Successes 200,545 | 19 Thread timeouts
Short-circuited (rejected) 0 | 94 Thread-pool Rejections
0 Failures/Exceptions

RHOAR Circuit Breaker

Demo Time!

But What About
The Front End?

Browser

9

POST /api/insult

Service @

Circuit Breaker
opossum.js

-
L

Circuit Breaker
opossum.js

~o— o ;Zjﬂ f"’\

]

Circuit Breaker
opossum.js

GET /api/adjective

Service @

\

4

File system Aod

adjectives.txt

:GET /api/noun

Y

Service @

File system

nouns.txt

Elizabethan Insults

Moar Demo Time!

const insult = circuitBreaker (getOrPostInsult, circuitBreakerOptions);
insult.fallback(_ => {
return {
name: 'Server Admin',
adjl: 'sleep-addled',
adj2: 'half witted',
noun: 'bumbershoot'
s
1)

insult.on('failure', console.log);
insult.on('reject', console.log);

insult.on('open', console.log);

$('#invoke').click(e => dinsult.fire(e).then(updateInsultlList));
S('#form-submit').submit(e => 1dinsult.fire(e).then(updateInsultList));
$('#clear').click(clearInsultList);

Merci Beaucoup!

https:.//qaithub.com/bucharest-gold/nodejs-circuit-breaker
https://qithub.com/lance/elizabethan-insults
https://qgithub.com/bucharest-gold/opossum
https.//launch.openshift.io

https://github.com/bucharest-gold/nodejs-circuit-breaker
https://github.com/lance/elizabethan-insults
https://github.com/bucharest-gold/opossum
https://launch.openshift.io

